Teaching Notes

Please note: these Teaching No www.nelsonprimary.com.au

Counting, pp. 2-3
Teaching Focus: to explore money, informal fractions $(1 / 2 \mathrm{~s}, 1 / 4 \mathrm{~s})$, simple addition, tens fact, counting by 10 s , and place value up to 100
Have the children look at the market scene. Say,
This is a picture of a market. What stalls/shops can This is a picture of a m m
you see at the market?
Point to the cobblestones. Say, This is a cobbled pathway. It it made up of lots of smaller pebble /stones.
Point to a group of cobblestones. Ask, How many Point to a group of cobblestones. Ask, How many
stones are in this group? (10) Point to another group. stones are in this group? (10) Point to another group
Ask, How many stones are there in this group? (10). Ask, How many stones are there in this group? (10).
How many stones are there in each group? Point to 5 groups of cobblestones. Ask, How many stones 5 groups of cobblestones. Ask, How many stones
would be here altogether? (50) How do you know? would be here altogether? (s0) How do you know?
What is a quick way of working it out? (count by 10 s , What is a quick way of working it out? (count by 10 s ,
10 x table, tens fact). Discuss strategies and patterns that were noticed.
Say, There are many cobblestones that make up the pathway. Ask, Can you estimate how many
cobblestones there are? Disuss strategies cobblestones there are? Discuss strategies (counting
by 10 , dividing pathway into sections, using by 10 , dividing p
a calculator etc.).

Fruit and vegetable stall - Point to the fruit and veg

Point to the fruit and vegetable stall. Ask children to identify the fruit and vegetables.
Point to the strawberries. Ask, How much does it cost to buy 1 punnet/container of strawberries? If you
bought 4 containers how much would it cost you? bought 4 containers how much would it cost you?
Repeat the questions using different quantities. Repeat the questions using different quantities.
Ask, How many containers could you buy for $\$ 20$? Repeat the question using different money amounts. Ask, If you had \$15 how many containers amounts. Ask, 1/ you hach change would you receive?
could you buy? How much Repeat the questions using different money amounts.
Point to the tomatoes. Ask, How much does it cost to buy 1 tomato? If you bought 4 tomatoes how much would it cost you? Repeat the questions using
different quantities. Ask, How much does it cost to different quantities. Ask, How much does it cost to
buy a bundle of 10 tomatoes? How many bundles of 10 could you buy for $\$ 20$? Repeat the questions using 10 could you buy for $\$ 20$? Repeat the questions using
different money amounts. Ask, Is it cheaper to buy a bundle of 10 or 10 individual tomatoes?
Point to the grapes. Ask, How much does it cost to buy a bag of grapes? How many bags could you buy for $\$ 9$? Repeat the questions using different money
amounts. Ask, If you had $\$ 19$ how many bags could you buy? How much change would you receive? Repea the questions using different money amounts. Point to the lettuces. Ask, How much does it cost
to buy 1 lettuce? How many lettuces could you buy to buy 1 lettuce? How many lettuces could you buy for $\$ 2.50$? Repeat the questions using different money amounts. Ask, If you had $\$ 13$ how many
lettuces could you buy? How much change would y lettuces could you buy? How much change would you
receive? Repeat the questions using different money receive? Rep
amounts.
Point to the oranges. Ask, How much does it cost to buy 1 orange? How many oranges could you buy for
S2 \$2? Repeat the questions using different money amounts. Ask, If you had $\$ 1.50$ how many oranges
could you buy? If you had $\$ 1.60$ how many oranges could you buy? I f you had 81.60 how many oranges
could you buy? How much change would you recive? Repeat the questions using different money amounts.
Point to the pumpkins. Ask, How much does it cost to buy 1 pumpkin? How many pumpkins could you
buy for $\$ 4$ R Repeat the questions using different money amounts. Ask, If you had \$14 how many pumpkins could you buy? I f you had \$15 how many pumpkins could you buy? How much change would you receive? Repeat the questions using different a pumpkin would cost? Why? How much do you think a quarter of a pumpkin would cost? Why? How much would it cost to buy 1 and half pumpkins?
Point to the carrots. Ask, How much does it cost to buy 1 carrot? If you bought 4 carrots how much would it cost you? Repeat the questions using different quantities. Ask, How much do you think it would
cost to buy a bunch of 10 carrots? Why? How many bunches of 10 carrots could you buy for \$1?
Ask, If you bought 1 orange, 10 apples, and a bag of grapes how much money would you need? Repeat with other combinations of fruit and vegetables.
Ask, If you had $\$ 20$ to spend what combinations
of fruit and vegetables could you buy? Repeat with of fruit and vegetables could you buy? Repeat with different amounts of money.
Point to the apples. Ask, How many apples are there? How many rows are there? How many apples in each row? Ask, How much does it cost to buy 1 apple. questions using different money amounts. Ask, If you had $\$ 3$ how many apples could you buy? How If yuch change would you receive? Repeat the questions using different money amounts.
Point to the watermelons. Ask, How much does it cost to buy 1 watermelon? How many watermelons could you buy for \$6? Repeat the questions using
different money amounts. Ask, How much does it different money amounts. Ask, How much does it cost to but half quuarter of a watermelon? I f you had
$\$ 5$ how many watermelons could you buy? Repeat the $\$ 5$ how many watermelons could you buy? Repea
questions using different money amounts. Point to the potatoes. Ask, How many bags of
potatoes are there? How much does it cost to buy potatoes are there? How much does it cost to buy
1 bag of potatoes? Repeat using different quantities Ask, How many bags could you buy for \$6? Repeat the question using different money amounts. Ask, If you had $\$ 12$ how many bags could you buy? If you
had \$13 how many bags could you buy? How much had $\$ 13$ how many bags could you buy? How much
change would you receive? Repeat the questions using different money amounts.

Ask, If you had $\$ 20$ to spend what would you buy? Why? Ask children to write out their shopping lists and the cost of the items. Repeat the questions
with different amounts of money with different amounts of money.
Ask, If you bought 1 apple, 1 bag of grapes and 2 carrots how much money would you need? Repeat
using different quantities of fruit and vegetables. using different quantities of fruit and vegetables.
Point to the lady holding the shopping basket. Ask, How much did her shopping cost her? Repeat with other people in the market scene.
Lolly stall
Point to the lolly stall. Ask, What can you see at the lolly stall? Point to each container. Ask, How much
do these lollies cost? ($20 \mathrm{c}, 10 \mathrm{c}, 5 \mathrm{c}, 20 \mathrm{c}$ per lolly) Io these lollies cost?? (20c, $10 \mathrm{c}, 5 \mathrm{c}, 20 \mathrm{c}$ per lolly). How many lollies do you think would be put in the bags? Why?
Ask children to make up their own 'Iolly bag' with set amounts of money. Ask, If you had 40 c what combination of Iolies would you buy? If you had $\$ 2$
what combination of lollies would you buy? Why?
Write out a 'lolly' shopping list and ask children to work out how much money they would need. Ask, If you wanted 2 snakes and 5 bubble sums how
much money would you need? Repeat using different combinations of lollies.

Odds and ends stall

Point to the odds and ends stall. Ask, What can you buy at this stall? How much do the hats cost?
How much do the sunglasses cost? How much do the thoelaces cost? Say, The people at the market have shoelaces cost? Say, The people at the market have
bought some things from the stall. What have they bought? How much did the items cost them?
Ask, How many hats are there at the stall? How much would it cost to buy them all? How many purple/ orange/green, etc. hats are there? How much would it
cost to buy $4 / 5 / 6$, etc., hats? How much would it cost to cost to buy $4 / 5 / 6$, etc., hats? How much would it cost to
buy all the pink green etc. hats? Ask, How many bags buy all the pink/green, etc., hats? Ask, How many bags are at the stall? How much would it cost to buy them all? How many bags could you buy for \$10? How much would it cost you to buy all the pink/green, etc., bags? Ask, How many glasses are at the stall? How much would it cost to buy them all? How many glasses could you buy for $\$ 30$? How much would it cost you to buy
all the pink grreen, etc. glasses? Ask. How many all the pink/green, etc., glasses? Ask, How many
shoelaces are there at the stall? How much would the shoelaces are there at the stall? How much would it cost
to buy all of them? to buy all of them?
Ask, II it cheaper to buy a hat and sunglasses
separately or to buy them together for \$12?
Ask, If you bought 1 orange hat, 2 bags and 2 shoelaces how much money would you need? Repeat with other combinations of objects.
Ask, If you had $\$ 20$ to spend what combinations of things could you buy? Repeat with different amounts of money.
Ice-cream stall
Point to the ice-cream stall. Ask, How many different flavoured ice-creams are there? Can you name them? What does a single cone look like? How much dee cost to have a double cone? What does a double cone cost to have a double cone? What does a double cone
look like? How much does it cost to have a triple cone? look like? How much does it cost to have a triple cone?
What does a triple cone look like? Say, There are some phat does a triple cone took like? Say, There are some people at the market who have bought an ice-cream.
Ask children to identify point to the people Point to the little girl at the top of the page. Ask, How much did her ice-cream cost? Point to the mother and her two children near the ice-cream stall. Ask, How much did the girl's/boo's'smother's ice-cream cost? How much did the ice-creams cost altogether? Does the flavour of the ice-cream affect the cost?
Ask, If you were going to buy a single strawberry ice-cream cone and a double chocolate ice-cream cone
how much money would you need? Continue to ask questions involving the prices given. Have childre work out the cost of purchasing different quantities of ice-creams.
Ask, If you had 85 what combinations of ice-creams could you buy? How many double ice-creams could How much change would you get? Repeat with other quantities.
Ask, If you bought 4 triple cone ice-creams and 1 single
Add 10, Take Away 10, pp. 4-5
Add 10, Take Away 10, pp. 4-5
Teaching Focus: to explore place value, tens fact, count Teaching Focus: to explore place value,
down, count back to and count up to

Add 10

Model counting by 10 sto 100 (use a 100 chart
or a number line if necessary - See Nelson Maths or a number line if necessary - See Nelson Maths
Building Mental Strategies Big Book Year 1, pp. 21Building Mental Strategies Big Boor Year 1, pp. 21-
22). Say, Count by 10s to 100 starting at 10. Model counting by 10 s to 100 from different starting points (eg 20, 30, 40, 50, 60, 70, 80, 90). Say, Count
by 1s from 30 to 100. Repeat with other starting by 1 s from 30 to 100. Repeat with other starting points.
Have children look at the first equation and picture. Point to the 2 yellow bundles that make 20 and ask, How many sticks are in this bundle? How do you know? Point to the yellow numeral ' 2 ' (2 groups of 10) to reinforce the answer. Point to the individual blue sticks and ask, How many sticks are here? Point to the blue numeral '6' (6 ones) to reinforce the answer. (If children are unsure revise place value using Nelson Maths Building Mental
Strategies Big Book Year 1, pp. 14-15.) Strategies Big Book Year 1, pp. 14-15.)
Point to the number 26 and say, the 'yellow 2 ' relates
to the 2 bundles of 10 and the 'blue 6 ' relates to the 6 to the 2 bundles of 10 and the 'blue 6 ' relates to the 6 individual sticks. Point to the number 10 and say, The 'yellow 10 ' relates to the 1 bundle of 10 .
Point to the equation $26+10$. Say, We can quickly work out equations like this by using our understanding of the value of numbers. Point to the numerals and pictures and say, When we add 26 and 10 we can
think, 2 tens and 1 ten make 3 tens with 6 ones left. That makes 36. Point to the numeral 36. Highlight
that the ' 3 ' is 2 tens and 1 ten added, and then point to the blue 6 and highlight that it is the 6 ones. Point to 'yellow 3 ' in the numeral 36 and ask, How did we get this 3 ? (eg It came from the 2 bundles and the 1 bundle.) Point to the 'blue 6^{\prime} 'in the numeral 36 and ask, How did we get this 6? (eg It came from the 6 blue sticks that made
up 26.) Discuss strategies that can be applied to ap 26.) Discuss strategies that can be applied to other equations involving +10 , eg count on ten,
knowledge of place value - adding one more nnowledge of place value - adding one more
ten. Ask, Can you identify a pattern that occurs whe adding 10 to a number? When you are adding 10 , what number do you add to? (eg the number in the tens column) How can you do this quickly? (eg count on by 10 s from the number)
Repeat the above questions with remaining equations and pictures.
Extend to include other multiples of 10 to 100 (20, $30,40,50,60,70,80,90,100)$. Say, To do equations like this you need to focus on adding to the tens column, eg $23+20$ you need to think 2 tens +2 tens is
4 tens or $20+20=40$.

Take away 10

- Model counting backwards from 100 by 10 s (use a 100 chart or a number line if necessary - See
Nelson Maths Building Mental Strategies Big Book Year 1, pp. 21-22). Use a number chart to show 10 less. Discuss the values of numbers, that is, tens less. Discuss the values of numbers, that is, tens
and ones. Discuss what number changes/becomes 10 less. Say, Count by 10 s to 100 starting at zero. Model counting backwards by 10 s , from different starting points ($90,80,70,60,50,40,30,20$). Say, Count backwards by 10s from 50. Repeat with other starting points.
Ask, If you have 3 and you take away 1, how many do you have left? If you have 3 tens and you take away 1
ten, how many do you have left? Discuss similarities Say, We can work out takeaway equations quickly by Say, we can work out takeaway equations quickly by
thinking of the value of the numbers (or by thinking thinking of the value of the numbers (or by thinking
about how many tens and ones make up the number). about how many tens and ones make up the number).
Have children look at the pictorial representations of the numbers, that is, 34 is 3 tens and 4 ones. Point to each bundle of 10 and discuss the value, eg This bundle of 10 has 10 ones in it. 1 ten is the same as 10 ones. Look at the equation and the visual representation of $34-10$. Ask, What is this equation asking you to do? (eg It is saying take away 10 from 34.) Point to the 3 bundles of 10 and ask, If you take away 1 bundle of 10 (10) from 3 bundles of 10 (30) how many bundles would you have left? Ask, Do we have to do anything with the ones? Say The 4 ones stay the same.

Repeat the q and pictures

Use a calculato

Continue to use takeaway strategies to solve equations involving taking away $20,30,40,50,60$, 70, 80, 90.
Using $34-10$, you could discuss alternative
strategies to work out subtraction equations:
Count back to' strategy: Ask, How many tens did you count back to get from 3 tens to 1 ten? (eg 3 tens -2 tens is 1 ten. I counted back 2 tens.)
'Count up to' strategy: Ask, What do you have to add to 1 ten to get to 3 tens? (eg 1 ten and 2 tens make 3 tens. I counted up 2 tens.)
'Count down to' strategy: Say, Start at 3 tens and count down to 1 ten (eg 2 tens, 1 ten) Ask, How many tens did you count down? (2 tens)
Discuss strategies, eg counting back by tens, count up to, counting down, looking at the place value of
numbers, counting back using the tens fact, that is, numbers, counting back using the te
3 tens take away 1 ten leaves 2 tens.

How Many? (concept of 1000),

pp. 6-7

Teaching Focus: to explore the concept of 1000 (quantity, place value, and making and breaking 1000 using groups of 100)
Have children look at the picture. Ask, What can you see? What are the people doing? Where are they?
How many people do you think there are? What did How many people do you think there are? What did you
do to help you with your guess/estimate? Are there more do to help you with your guess/estimate? Are there more
than 10/100/200/500/800/1000 people? Why do you think there are more than 10/100/200/500/800/1000 people? Ask, How many different sections are there? Point to the Section A. Ask, How many people do Point to the Section A. Ask, How many people do
you think are here? Why? What clues/strategies did you use to help you with your gless/estimate? Poin to the back/first row. Ask, How many people are in
this row? Say, If there are 10 people in this row, how this row? Say, If there are 10 people in this row, how quickly count how many people are in Section A? What quickly count how many people are in Section A? What parwards by 10 s; addition of each row $10+10+10$, etc.; multiplication, that is, there are 10 rows and there are 10 people in each row (10×10). Discuss what method is quicker, adding rows of ten or multiplying by 10 .
Count by 10 from varying starting points to 100 (0-100). Identify rows of 10 in the picture. Using rows of people count by multiples of 10 :
$20 \mathrm{~s}, 30 \mathrm{~s}, 50 \mathrm{~s}$ (identify by pointing to the $20 \mathrm{~s}, 30 \mathrm{~s}, 50$ s (identify by pointing to the corresponding rows)
Point to Section A. Ask, How many people are in this section? Point to Section B. Ask, How many people do you estimate are in this section? Why? What strategies
did you use to work it out? did you use to work it out?
Point to the 5 top rows of Sections A, B, C, D and E. Ask, Estimate/Guess how many people there are in
these 5 sections. How did you know? What strategies these 5 sections. How did
did you use to help you?

Continue to point to a sequence of sections and ask, Estimate/Guess how many people there are in these 5 sections? What strategies did you use to work it out?
(counting in groups of $100: 100,200,300,400$, etc.)

Point to all the people in the concert hall and ask, How many people are there altogether? Say, We do not have to count up individual people to find the total number of people. What strategies did you use to help you find the total? (eg counting forwards in groups of 100, repeated addition, multiplication)
Discuss the concept of 'rounding up to 100 '. Point to each section and say, We know that each section has 100 people. Point from the first person in Section A up to the last person in the second last row in the Section B. Ask, Is the total number of people closer to 100 or 200 people? How did you work it out? Select other people in each section and ask a rounding question to the nearest 100 . Select to the nearest 100 .
Select an individual and identify their place value based on their placement in the stadium (that is, the top, left-hand person in Section A as bein number 1 and the last person in the bottom, 1000th person). 1000 th person). Use each section (that is, group of people in A) as 100, each row or people as 10, and sitting in seat 124 as Is this person closer to 100 person 200? Ask children to find the location of differen 200 ? Ask children to find the location of different
numbers. Rename 124, for example, as 1 hundred 2 numbers. Rename
Discuss ordinal number in relation to people in the concert hall, with the top, left-hand person in Section A as being the 1st person and the las person in the bottom, right-hand seat on page (Section J) as being the 1000th person.
Fractions: Ask, How many people are in this concert hall? If half the people went home, how many people would be left? What strategies did) Say Some people in the sections will stay with each other and other people in the sections will need to $b e$ separated. Separate the people and say, We have split these people into 4 groups. Point to each quarter. Ask, How many people are in each quarter? Repeat for other fractions.
Counting
Look at the picture of the people at the concert hall. Discuss counting strategies. Point to the people in the Section A. Say, We can count by 1 s . Count by 1 s to 100 (end of the Section A). Ask, Are
there any other ways we can count? (eg by 2s, $4 \mathrm{~s}, 5 \mathrm{~s}$) there any other ways we can count?
Say, This is called skip counting. Say, Count by 1s to 100. Count by 2s to 100. Ask, What do you notice? (eg Counting by $2 s$ is quicker than counting by 1 s , all the numbers are even.) Point to the people in Section A to identify the 100. Ask, What do you notice? (eg It is quicker tha counting by $1 \mathrm{~s} / 2 \mathrm{~s}$, all the numbers are even.) Point to the people in Section A to identify the pattern when counting by 4s. Say, Count by 5 s to 100. Ask, What do you notice? (eg It is quicker than even/odd/even.) Point to the people in the Section A to identify the pattern when counting by 5 s .

Place Value, pp. 8-9

Teaching Focus: to explore place value to 999 and rename numbers
Point to the pictorial representation of 157. Point to the picture of the ones. Ask, How many ones are here? Point to the picture of tens. Ask, How many tens are there? Count the tens (1 ten, 2 , tens, 3 tens, 4 tens, 5 tens). Point to the picture of hundreds. Ask, How many hundreds are there?
Discuss what makes up 'tens/hundreds'. Ask, How many ones are there in ten? How many tens are there in 100? Say, 10 ones make 1 ten, 10 tens make 1 hundred.
Point to the pictorial representation of 157. Point

CENGAGE Learning

Nelson Maths Building Mental Strategies Big Book Year

Text: Anne Giulieri and Jy Dale
Illustrations: Anna Goodwin (pp. 2-3, 18), Gaston Vanzet (pp. 4-5.
6-7, 10-11, 17, 19-20), Nick Diggory (p. 15)
Editor: Jay Dale (UpLoad Publishing Pty ltd) Design: Goanna Graphics (Vic) Pty Ltd

Text © 2012 Cengage Learning Austraia Pty Limite

Copyright Notice

This Work is copyright. No part of this Work may be reproduced, stored in
retrieval ysytem, or transmitted
retrieval system, or transmitted in any form or by any means without
witten permission of the Publisher. Except as permitted under the Written permission of the Pullisher. Except as permitted under the study, research, criticiss or reveview, subject to certain limitutaioss. These
limitations include: Restricting the copying to a maximum of one linitations include: Restricting the copying to a maximum of one chapter of
10% of this book, whichever is geater; Providing an appropiate notice and 10\% of this book, whichever is greater; Providing an appropriate notice and
warning with the copies of the Work disseminated; Tking all reasonable warning with the copies of the Work disseminated; Taking all reasonable
steps to limit access to these copies to people authorised to receive these copies; Ensuring you hold the appropiate i icences issued by the Copyright Copiest Ensuring you uolat the appropriate Liciences issued by the Copyright
Agency Limited (cCALl), supply remuneration notice to CAL and pay any

ISEN 9780170251532

Cengage Learning Australia
Level7, 80 Dorcas street
Level, 8 Dorass sur
South Mebourne, Vici
Phone: 1300790853
Cengage Learning New Zealan
Unit 4B Rosedale office Park
331 Rosedale Road, Albany, North Shore NZ 0632
Phone: 0800449725
For learning solutions, visit cengage.com.au

12345671615141312

Teaching Notes continued

relationship between multiplication and division by rewording/writing the equation as 10 shared between 5 is $2(10 \div 5=2,10$ shared between 2 is $5,10 \div 2=5$). Use concrete materials and pictorial representations to solve 'shared between' equations. Introduce children to the division term - 'divided by'. Explore the relationship between multiplication and division.

Arrays, p. 17

Teaching Focus: to explore the relationship between repeated addition/multiplication/commutative property of multiplication

- Look at the pictures of arrays. Ask, What is this a picture of? (chocolate). Which block of chocolate would you like? Why? (It is bigger/smaller, etc.) Ask, What block of chocolate is the biggest/smallest? Count the blocks.
Point to the top block of chocolate. Ask, How many pieces of chocolate are there? Point to the first column of pieces and ask, How many pieces are there? Point to the next column and ask, How many pieces are there? Repeat the same question with the remaining columns. Ask, What is the same about all the columns? (They all have 5 pieces of chocolate in them.) Ask, Do you need to count each column to know how many are in the other columns? Is there a quick way of finding out how many pieces there are in the whole block? (You could add up each column $5+5+5+5+5$, work out 5 groups of 5 or know your times tables 5×5.) Ask children to explain their responses. Explore each strategy. Use a calculator and the add on button to show repeated addition.
- Point to the middle block of chocolate. Ask, How can we work out how many pieces of chocolate there are? (Find out how many rows/columns there are.) Point to the first row. Ask, How many chocolate pieces are there? (7) How many pieces of chocolate are there in the second row? How many pieces of chocolate are there in the last row? Are they the same size? Do they have the same number of pieces in each row? How many rows are there? (3). Point to each row and say, You have 7 pieces here, 7 pieces here and 7 pieces here. How could we quickly find out how many pieces there are altogether? Say, we could say $7+7+7$ or we could say 3 rows of 7 (3×7). Ask, How many pieces are ask How man. Point to the let-hand column and ask, How many pieces are there? (3) How many pieces sixth/ast colum? Are they the same size? Do they sus same mber of ines elum? have the same wre there? (7). Point to coch column and say We have 3 pieces here How could we quickly find out how many pieces there are altogether? Say We could say $3+3+3+3+3+3+3$ (use the add on button on a calculator to show repeated addition) or we could say 7 columns/lots of $3(7 \times 3)$. Ask, How many pieces are there altogether? Ask, What is 3×7 ? What is 7×3 ? Does the order of numbers matter when ou are doing multiplication/times/group of equations? Why not?
Repeat similar questioning with the remaining block of chocolate ($2 \times 10 / 10 \times 2$). Continue to show the relationship between repeated addition and multiplication. Discuss commutative property of multiplication, that is, 2×10 will have the same product as 10×2.
Using counters lined up in row/columns make variety of different arrays. Discuss repeated addition and the commutative property of multiplication.

Make to 10 Strategy, pp. 18-19
Teaching Focus: to explore the 'make to 10 ' strategy to assist with addition computation

- Discuss adding a single-digit number to $10(10+1$, $10+2,10+3,10+4,10+5,10+6,10+7,10+8$ $10+9$). Discuss place-value strategies that assist in working out the equation, eg the tens stay the same o mentally compute 'adding a single-digit number 10 . Ally comp to 10^{\prime}. Play team games and challenges to improve speed.
Practise mental computations and speed with ' 1 more than $/ 1$ less than' problems to 20 , eg 1 more than 9,1 less than 13 , etc.
Point to the first picture and equation on p. 18. Say, We can use the make to 10 strategy to help us solve addition equations quickly. Point to the hands and say +3 is close to $10+3.10+3$ is 13 . We don't really have 10, we really have 9 which is 1 less than 10, so 13 ake away 1 or 1 less than 13 is 12. Point to the quation and highlight $(10+3)-1=12$. Show this concept on ther 10 is Encourage children to mentally compute the answer Continue to show and solve each equation using the visual prompts of hands and show how you would mentally compute the answers.
- Point to the first picture and equation at the top of p. 19. Say, 9 is the same as 'a bundle of 10 ' takeaway (point out the green stick in the bundle). To use he make to 10 strategy we look at the equation $9+2$ and say, $10+2$ is 12 , takeaway 1 is 11 . Show this concept on the number line at the bottom of the page. Encourage children to mentally compute the answer
- Continue to show and solve each equation using he visual prompts of sticks and show how you would mentally compute the answers.

Extension

Extend to include larger numbers, that is, make to 20 , eg $19+7$ is the same as $(20+7)-1$.

Adding 9, pp. 20-2

Teaching Focus: to explore adding and subtracting 9 adding and subtracting 11 , and tens fact

Adding 9

Point to the equation $24+9$ at the top of p. 20. Point to the first think bubble on p. 20. Say, In this equation we are adding $24+9$. But we can think 33 Ask Why do We nead to takink less than 34 3. Ask, sy 1 less than 34 is 33 . Point to the corresponding think bubble with the ten frames on p. 21 and say, 24 and 10 is 34 . Point to the tens frames that show this. Point to the ten fame with 1 dot crossed out and say 34 takeaway 1 is 33
1 dot crossed out and say, 34 takeaway 1 is 33 .
Repeat with the remaining equations. Encourage rarn to
Adding 11: Discuss strategies that are useful when adding 9 , eg think of the number as 10 then take awa . Ask, Can you use this strategy in some way when $34+11$? What would be a quick way of working out 34 ? Say, $34+10$ is We Wer 11 , 10 more to 44 because we are really adding on 11 , not 10 so, (34 +10$)+1=45$. Repeat with ot ile equations $23+11,7+11,45+11$ etc. Say, We can add 9 and 11 to equations by thinking that they are 10 then either taking away or adding 1 .

- Subtracting 9: Ask, What would be a quick way of working out 34-9. Say, We could think 34-10 then add on $1(34-10)+1=25$. Ask, Why do we have to add the 1 on at the end? Repeat with other 2-digit numbers.
- Subtracting 11: Ask, What would be a quick way of working out 34-11? Say, We could think 34-10 then takeaway $1(34-10)-1=23$. Ask, Why do we have to takeaway the 1 at the end? Repeat with other 2digit numbers.

Take Away IOs, p. 22

Teaching Focus: to explore place value and the tens fact
to solve computations
Count forwards by 10 s from zero to 100 . Count forwards by 10 s from random starting points multiples of 10). Count backwards from 100 to
 starting points (multiples of 10)
Point to the first number line and equation (20 -10). Say, To take 10 away from 20 you move back 10 laces on the number line. Point to the number line and the blue count-back line and say, Count back 10 by 1s. Instead, we can count back by 10s.

- Point to the next number line and equation (100 10). Say, To take 10 away from 100 you move back 10 places on the number line. Point to the number ine and blue count-back line and say, Count back 10 from 100. Say, We do not need to count back 10 from 100 by 1s. Instead, we can count back by 10s.
- Point to the next number line and equation. (60 $-10)$. Ask, Do we need to count back by 1s. Why not? Point to the number line and blue count-back line nd say, Count back 10 from 60. Ask, What is $60-$ 10? Ask, What do you think $60-20$ would be? Why? What strategis
- Point to the next number line and equation (50 -20). Say, Follow along with your eyes as we jump back 20: 40, 30. Say, We didn't have to count back by 1 s , we could count back in groups of 10 . Repeat with ther equations (2 -digit multiples of 10 subtract 20), eg $40-20,60-20,80-20$.

Using a 100 number chart (see Nelson Maths Building Mental Strategies Big Book Year 1, p. 21) count forwards/backwards from random number by 10s. Discuss patterns that emerge, eg the one column stays the same and the tens column changes. Write the patterns in a sequence, eg 95 $85,75,65,55,45,35,25,15,5$.

- Point to the next number line and equation (25 -10). Say, Follow along with your eyes as we count back 10. Say, Look at the equation $25-10=15$. Ask, What number changes in the answer? (The number in the tens column.) Why?
- Point to the last number line and equation (34 -10). Say, Follow along with your eyes as we count What number changes in the answer? $34=24$. Ask, the tens column.) Why?
- Select other random equations involving 2 -digit he equalion Use alcule to he equations quickly. Use a calculator to check th answer

Revision

en involving 2-digit numbers adding 10. Discuss the patterns that emerge.

Take Away Teens, p. 23
Teaching Focus: to explore such strategies as count back, place value, tens fact, renaming numbers and distributive property

- Look at teen numbers. Discuss the value of digits, eg 13 is made up of 1 ten and 3 ones. Make the Say, 13 is the using 10 or bins ofticks. numbers written in blue and red on the page. Say, The blue 1 is ten and the red is a one. The blue 1 is ten and the red is a one.
- Point to the first number line and equation. Point to the 12. Say, The 12 is the same as a 10 and a 2 . Say, 20-12 is the same as $20-10$ and take away 2. Point to the number line and say, $20-10$ is 10 , then line' and to the corresponding to in 12 blue 'jump the red 'jump line' and the corresponding 2 in 12 . Point to the blue and red 'jump lines' and ask, How many does this make? (12) Say Take away 10 and take away 2 is the same as take away 12. Ask, Is it easier to count back 12 or count back 10 and then count back 2? Why? Discuss speed and using other facts like the tens fact.
Ask, If you were taking away 15 what could you rename it as/break it down to? (10 and 5). Ask, If you were taking away 17 what could you rename it as/break it down to?
Point to the second number line and equation. Point to the 12. Ask, What is the 12 the same as? (10 nd a) Say, $15-12$ is the same as $15-10$ and take 5 , Pe take away 2 more makes 3 . Point to the bue 'jump line' and to the corresponding 1 in 12. Point to the red 'jump line' and the corresponding 2 in 12. Point to the blue and red 'jump lines' and ask, How many does this make? (12) Say, Take away 10 and take away 2 is the same as take away 12. Ask, 10 and take away 2 is the same as take away 12. Ask,
Is it easier to count back 12 or count back 10 and then count back 2? Why? Discuss speed, and using other facts like the tens fact.
Repeat with the other number lines and equations. Use a calculator to check the accuracy of computations.

Extension

Discuss other strategies that can be used, eg count up to, count down to. Point out that the sam answer occurs with all strategies.

